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ABSTRACT

The identification and control of vapor phase reaction
kinetics to produce pigments by homogeneous nucleation have
been achieved. A vapor phase apparatus has been designed,
fabricated, and calibrated through 1500°C. Vapor phase reac-
tions have been analyzed, calculations have been made, and
powders of alumina, rutile, and zinc orthotitanate (in & mixed
phase) have been produced by homogeneous nuclestion. Electron
microscopy shows uniform particle morphology and size. The
anticipated advantages of vapor phase homogeneous nucleation
(namely, purity, freedom from defects, and uniform particle
sizing without grinding) have not been disproved.

descriptors:
Thermal control space-stable pigments, Vapor phase,
Nucleation, Alumina, Rutile, Zinc Orthotitanate,
Ceramics
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SUMMARY

The development of vapor phase technology in the preparation of
space-stable pigments-has been demonstrated by the production of very
fine rutile powders with descrete morphology and an average particle
size of O.7u. ’

The critical parameters for the controlled production of rutile,
and alumina have been used as the bagis for the development of monosized
particles of zinc orthotitanate. Zinc orthotitanate (Zn,TiO,) has been
found to be one of the better space-stable pigments for use in thermal-
control paints of low ¢ and low a/e ratio (solar absorptance and infrared
emittance). Because of these stringent requirements, it is believed
that the development of vapor phase reactions to produce zinc orthoti-
tanate by homogeneous nucleation is the best approach.

Vapor phase apparatus has been designed, fabricated, and calibrated,
Vapor phase reactions have been analyzed, calculations have been made,
and powders of alumina, rutile, and zinc orthotitanate (in a mixed phase)
have been produced by homogeneous nucleation. Submicron size particles
required for efficient scattering of solar radiation in the 0.35 to 2.5u
wavelength range have been produced. Excellent sub-angular morphology
was exhibited in the electron photomicrographs.
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minimum of structural defects would be the most space stable. When
pigments degrade, the solar sbsorpbion faé increases, thereby in-
creasing the of ¢ rdtjm,

The primary purpose of a thermal control coabting is to reflect
as much radiation as possible; thereby preventing the radlation from
reaching the interior of the space vehicle. The nmost impgrﬁant factor
to consider in the reflectivi %3 of a two-phase coating ar l} the
parbicle size of the pigment, (2) the relative index of refraction of
the pigment and the binder, and (3) the volume of the pigment present
in the coating.® Maximum backseat%ering or reflectance is obtained
when the particle gize of the pigment is of the same order of magnitude
as the wavelength of the incident radiation. For solar radiation, the
maximom intensity is bebtween 0.35 and 2.54.

For greatest reflechtance, the i

of refraction of the pig-

ment should be significantly bigher than that of the binder and the
volume of parbicles should be as grest as possible. A pigm@ni guitable
(2) be

for a thermal control costing should (1) have a low (a/e) ratio
gtable when subjected to ultraviolent radiation J
a particle size in the 0.35% to 2 and
refraction.

~

2, Phase Bguilibrium in the Zn0-Ti0s Systen

Compounds reported for the Zn0
tanaste (ZnsTiO4), zinc metatitanate (Z
(ZneTiz0s). The study of phase equilib
by Dulin and Rase® shows decomposition of zinc mesz?tdﬂa%
orthotitanate and rutile at approximately 900°C (see Fig. 1
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orthotitanate is the only stable zinc oxide-titania compound above
1000°¢C,

The structures of zinc orthotitanate, zinc me idtit;ﬁaﬁe and
zinc sesquititanate are inverse spinel, hexagonal, and defect QELQMiﬁ
respectively.® Zinc orthotitanate with an inverse spinel structure has
32 oxygen atoms in an approximately cubic closge-packing arrangment,

with 8 Zn®t ions in A sites with tetrs htﬂlﬁk ﬂocrﬂ” n, and 8 zn2t +
8 Ti** ions distributed randomly in B sites ral coordins-
tion to the oxygen atoms. Zinc sesguiti ratallizeg in a defect
spine l utructuzé with 8 Zn®t ions in the t tka%cu«a;, aitions and

12 Ti%** ions occupying the octahedral positions. %3
an ilmenite-type structure.

3. Veapor Phase Powder Technol
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Aluminum oxide powder wasg
ous micleation in the. vapor phage
bhydrogen were reacted in an i,ufbﬂy ne. Variables such as
temperature; gas velociby, system pressure, and gas compositlon were
shown to be controlling parameters for powder and whisker growth.

Schaffer and Jones® produced other oxide powders (i.e., SiOs,
7r0s, TiOs, and Zn0 and the double oxide ZnTiOs) using a halide hydroly-
sis reaction and subseguent homogeneous nucleation of the powder in
the gas phase using equipment similar to that of Campbell. Both chlori-
nation and vaporization of zinc were used for production of Zn0 and
ZnTiOs, Chlorvinagtion of zinc, proved unsatisfactory because of ibs
high vapor pressure. Vaporization of zinc proved difficult to conbrol
because other reacting gases passed over its surface and
limited evaporation.

oxide formation
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II. PRINCIPLES OF VAPOR PHASE POWDER PRODUCTION

The fundamental considerations for a vapor phase reaction systenm
are

(1) the thermodynamic behavior of the system at
selected temperatures;

(2) the kinetics of nucleation, reaction, and
evaporation; and

(3) 2 basis for process control.

Formatlon of zinc orthotitanate wag attempted by introducing vapor
species of zinc and titanium inbo a hested reaction zone at constant
temperature and pressure., Introduction of He and COs with the wmetal
vapors provided the remaining reactants necesgary to produce zinc
orthotitanate by homogeneous nucleation. By carrying out the chemical
reaction in a zone of constant temperature and pressure, the feasibility
of the reaction could be predicted from thermodynamics.

A, THERMODYNAMICS COF ZINC ORTHOTITANATE REACTIONS
The suiltability of the thermodynamics for the zinc-titania system
has been established by thermodynamic calculation and previous investi-

gations. Two reactions were considered for production of zinc orthoti-
tanate; i.e.,

2 Zng + TiCly, + 2 Ha, + L COz,, = ZngTi0s  + b HClg + L COg (W)

and

2 angg + TiClég + U cog? FZ0aTi04 + 8HCL; + b COp . (5)

By summuing the free energiesg of
and subbtracting the sum of the Iy = of the reactants, the free
energy changes for Egs. () and (5) obtained from room temperature
to 2000°K. These values are summarized in Tables T and II. Free-
energy data®:'® ywere available for all the compounds in Egs. (4) and (5)
except ZngTi0,. An estimate for ZnsTiO, was made using the following
reaction:

2 Zn0 + Til0s = ZnaTiO4 (6)
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This reaction occurs above 780
one mmle of ZnzTiC, must be more neg
energies of two moles of Zn0 and on
energy change for reaction (6) is

ast =5, aom m’;/’z ,
free-energy value for ZnsTi0O4 was Calcui @dg a8 sumnarize

As indicated in Tables I and II, the free-energy changes for Egs.
(4) and (5) are substantially negative with large egulllbr;um constants
above 1300°K (1023°C). Thus the thermodynamics are favorable for the
formation of ZnsTi0, above 1000°C where ZnsTiO4 is the only stable zinc
titanate compound.

B, PRODUCTION OF METAL VAPOR SPECIES

The metal vapor species were TiClg, Zn, and ZnCls. Tibtanium tetra-
chloride was produced by the chlorination of titanium at LOO°C wusing
the reaction

Tig + 2 Clz, z%f‘l‘i{il%g . (7)

ion (7) has a iarge n@gstive free-energy change from 300° to 2000°K.
ily et the chlovination erature
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Table I1I1 ~ Estimate of Maximum Free

Temperature 5 AGTS A ALES e o
2 U o a7 IAS T

°x% e (Keal / mole) (Keal / mo.

300 27 -152.20 ~212,00
Loo i27 -149.30 -207.90 -362,20
500 227 ~142.60 ~203.60 -351,20
600 327 ~137.90 -199.30 -3h2.20
700 hka2y -133.20 =19k, 30 -333.15
800 527 =121, 0C =190.75 =323.75

900 627 123,00 ~186.55 31k, 50

1000 727 ~118,00 -182.35 «305,35

1200 927 ~106.80 -173.89 -285.69

1300 1027 -101.40 =169.55 ~275.95

1400 1127 - 95

1500 1227 - 90,20
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Table 1V -

o {°K) Reaction I
) (°K) {Kcal/mole)

29 200 5,06 %
127 100 -69. 45 8.89 x 10%7

h.57 x 1029
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4, Computer Program

A computer program was written for the IBM 360/75 computer to
compute the free energy for any reaction having less than 15 reactants
and 15 products. The computer program flow chart is shown below and the
computer program is detailed in Appendix B.

L Read in Data for Reaction

l

Compute Change in Free Energy
at T

Add 100°K

Compute Equilibrium Constant
to T

at T

No

Is T = 2000°K

Write Out
T, AG,2nd K

l Stop l

Computer Program Flow Chart for Computing Thermodynamic
Free Energy Values

23




’

I LOWeTers

o

sets of




Reaction Tube

Furnace

Panel

Control

Pressury

Gauges




Reaction
—®-1 Control

Regction
Chamber -

S
;- 3
B




e

V%

o

St

e

&

[ S




W

4

Lione

Q81

P

W

ible

C

B

U

v
(=]

=4

was

el

e hetw

tur

i
i

Was

(=]
$el
o
&}
ht
o




e 5%
M L0 mm ) tha

hi nded to
ded

vacuum tight

=L

Dtdim ess
Joint,

a stainless steel - 4'"6 t and sealed
The | to & rubbe
mun window.

w8l vacuum
to the atmosph
n gages which had 3

Pecsuse pre
dats 1s based on consta
actual tempersture of the gaa%g to
aluming LUJ@ fﬁu mm in diameter)
zone w1th

reaction chambayr
pressures, and gas

dioxide were m ad a8
they would
the O}Qtla«{'
on r@aﬁ@;on




800

a6

600 | 400
2

Lﬂ f ! .
< o) (@]
9] o o

{ i
= (@]

s
0
100

(5.0 X 3o} 8PISUI singpiadwel |pNOY £



tively, were

poured into
the zinec he
the run and
evaporation
pressure was 23
the following glier 31 to
the run, system pre f

zine was coc

tandum, CO.,

ised again

wu

& hj@d whjle nhe ?w

to  room t@mgcya*urn Qnd
the resction tube was remo

pr@ducts were analyzed.

S




{001 XDe ) 8iNjDIDAWRY

0

)

ki

ey

O




culated over the te

are summsrized in Table V.,

1L
tu

T e

&

p

'

N
B

condltior
Luminum ch




Table V

Punction

[
N
&Y
=

1600

1700

1800

¥ry n v : -+
2 AlClg + 3Hp + 3 CO o AlsOs + 6 HCL + 3 €O (13)
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Table VI - Conditions for Aluminum Oxide Powder Production

Flow Conditions (cc/min) Pootal Temp. Particle
Run No. Hs CO» CO Claxs Clz Al (Torr) (°c) size (p)
VA-2 1000 200 - - 30 15 1500 ~ 0,01
VA=3 1000 200 - - 30 200 1500 ~ 0.01
VA-L 1000 200 - - Lo 350 1500 ~ 0,01
VA-6 950 800 100 20 4o 100 1750 0.05
VA-8 950 800 100 20 70 340 1700 é
%ggg \ 0.07
1850 §
VA=Q 950 800 100 20 70 260 1850 0.18
VA-10 600 500 210 L5 50 660 1800 0.13
VA~13 100 100 - - 80 50 1700 0.02
VA-15 100 100 - - 80 100 750 0.09
VA-16 53 50 = - 40 50 1750 0.05
VA=1T7 100 100 - - 80 200 1750 0.12

L0 50 1600 0.1k
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Table VII - Free-Energy Changes and Bguilibrium Constants as a Function

of Temperature for

wide Product
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b, Powder Characlteristics - In the majority of the runs,
powder was deposited in three distinct zones in the reaction tube above
the hot zone. The zones were (1) the top two inches of the reaction
tube, Zone 1; (2) approximately 2-L4 inches below the top of the reac-
tion tube, Zone 2; and (3) from approximately L4 inches below the top
of the reaction zone to the hot zone, Zone 3 {see Fig. 25 for sketch
of zones). The zones were evidenced by color varistion from zone to
zone, According to visual evidence in mogt runs Zone 1 contained
nmainly metallic zinc which was powdery in nature and dark gray. Zone 2
contained large amounts of metallic zinc which condensed on the walls
and flowed down the tube to the point that vaporizstion occurred again.
Apparently the temperature of Zone 2 was in the range in which zinc is
a liquid. The major portions of the oxldes were found in Zone 3 and
were evidenced by a light gray to white color. In no run was ZnsTiOgh
the only oxide formed and in all runs TiOs and ZnO were found mixed
with the Zn,Ti0O,. The results of x-ray diffractometer phase analysis
(see Appendix E) as well as maberial color for the different portions
of the tube are listed in Table IX. The phases indicated in Table IX
are listed in order of peak helght to give an indication of relative
amounts of phases found. The results of regions left blank does not
indicate a lack of material deposited in those regions but simply that
these regions were not analyzed, for in every run a significant portion
of the material formed from the vapor phase was found in Zones 1 and 2.
In every run the materials in Zones 1 and 2 were gray to black in color
and in most cases contained large amounts of metallic zinc which could
be easily seen.

In four of the runs ZnsTiO, was formed and in one run (#1)
it was found to be the most abundant phase in Zone 3. Figures 26 and
27 are electron micrographs of run ZnsTiO4~l, Zone 3. Although the
characteristic morphology of ZngliO, ig not known and therefore cannot
be determined from the mixed phases in the micrographs, the micrographs
do show a particle size din the 0.1 to 1.0u regions, as was evidenced
in the rutile electron micrographs presented earlier. The characteris-
tic hexagonal morphology shown by rutile in earlier micrographs can be
seen in the micrographs of Figg. 26 and 27.

Although other oxide
presence in some of the runsg ind
at least Lo a partisl degree.

reaction (4

of Zn evaporation rate and incomplete chlc
runs ZnsTi0,=8,9 and 10, 29 per cent of the ical
was low. However, the efficiency may have been higher because chemi-
cally reacted chlorine on the surface of the titanlium would have
masked the true weight loss of the titanium after the run,

The second, and most probable explanation, is lack of mixing
of the Zn vapor which flowed outgide the central injection nozzle with

e

the gases flowing through the central injection nozzle. The Reynolds
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Teble X - System Condd

Gas Flow Rates
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¢ in Thermodynamic Calculations™s*©
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Table XII~ Free Energy Values Us

el

&

°C °K AlCla

Cla co 00z HCL  He  TiCle Ti0p  Zn  ZnClgz 7n0  ZnpTiOy

27 300 ~136.08 Q «32,80 ~G4.2%  -22.7% 0 L175.90  -212.00 0 =88.45 -706.10  -3069.60

o} ~35,00  -9k,30 -22.95 O =170.55%  -207.90 o 84,80 74,65 -362.20
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%01

LoD -13k.89
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0 -h1.55 -0Lk.k5  .23.60 0 -161.60 194,95 O -76.60 66
o

5 =b3,70 ¢ ~Th.40 -6k, 0C
) 0 =T72.20 -6L.50
) =47 0 =70.00  -59,00  -305.35
o 0 -BE,TE  =56,10
& G =6%.48 53,80 -285.69
U O 60,18 -50,T0 =275.95
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Fig. 30 - X-ray Diffraction Pattern for Alumina, Run VA-10
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Table XIV -~ X-ray Powder Diffraction Data for Titanium, Run No, TiOz-1

Lgiﬁ 28 d spacing I Phase L%SQ 26 d spacing I Phase
1 27.63 3.225 S TiOs 19 95.53 1.040 W Ti0s
2 36.28 2. b7k M TiOp 20 97.48 1.02h6  yy Ti0s
3 39.5L3 2.283 W Ti0s 21 106.18 L9633 vy Ti0z
L L1.L8 2,175 M Ti0s 22 116.53 .9056 W Ti0
5 Lh,23 2.0h6 W Ti0s 23 117.88 .8992 W TiOs
6 45,73 1.902 W Camera el 120.28 .8882 M Ti0z
7 5k, 53 1.681 S TiOz 258 122,88 8770 M Ti0z
8 56,75 1.620 M Ti0z 250 123.63 .8739 W Ti0z
9 62,98 1.L475 W Ti0s 26a  131.88 .8L59 W Ti0s
10 64,18 1,450 W T1i0s 26b  132.58 LBh13 Ti0s
11 69,13 1.357 M Ti0s 27a  136.68 .8288 W Tils
12 69.93 1.3kk W Ti0s 27b  137.43 .8266 Vi doublet
13 76.63 1.2h2 VU Ti0s 28a  140.08 .8195 M Ti0s
. 1k 82.48 1.168 W Ti0s 28b 140,98 L8172 W doublet
3 15 84,38 1.7 W Ti0s 29a 155,78 L7879 VW
16 87.78 L.111 VW T102 30a 162,13 N W
17 89.73 1.092 i Ti0s 30b  163.88 STTT9 W
18 90.93 1.080 W Ti0s

Palttern for Titania, Run Til0z-1
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